
MATLAB® Production Server™

C Client Programming

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Production Server™ C Client Programming
© COPYRIGHT 2012–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2014 Online only New for Version 1.2 (Release R2014a)
October 2014 Online only Revised for Version 2.0 (Release R2014b)
March 2015 Online only Revised for Version 2.1 (Release R2015a)
September 2015 Online only Revised for Version 2.2 (Release R2015b)
March 2016 Online only Revised for Version 2.3 (Release 2016a)
September 2016 Online only Revised for Version 2.4 (Release 2016b)
March 2017 Online only Revised for Version 3.0 (Release 2017a)
September 2017 Online only Revised for Version 3.0.1 (Release R2017b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Client Programming
1

MATLAB Production Server Examples 1-2

Create a C MATLAB Production Server Client 1-3

Create a C++ Client . 1-4

Unsupported MATLAB Data Types for Client and Server
Marshaling . 1-10

C/C++ Client Development
2

Create the Client Runtime Context . 2-2

Configure the Client-Server Connection 2-3
Create a Connection with the Default Configuration 2-3
Change the Response Time Out . 2-3
Change the Response Size Limit . 2-4

Access Secure Programs Using HTTPS 2-5
Configure the Client’s Environment for SSL 2-5
Make a Secure Request . 2-6
Make a Secure Request Using Client Authentication 2-8

Data Handling . 2-9
MATLAB Array . 2-9
Data Storage . 2-9
MATLAB Types . 2-11
Using Data Types . 2-13

iii

Contents

Handle Function Processing Errors . 2-15
Determine if an Error Occurred . 2-15
Get the Error Information . 2-16
Determine the Type of Error . 2-16
Process HTTP Errors . 2-17
Process MATLAB Errors . 2-17
Process Generic Errors . 2-18
Clean Up Error Information . 2-18

Clean Up MATLAB Resources . 2-19
Clean Up Client Configuration . 2-19
Clean Up Client Context . 2-19
Clean Up Client Runtime . 2-20
Clean Up MATLAB Arrays . 2-20

iv Contents

Client Programming

• “MATLAB Production Server Examples” on page 1-2
• “Create a C MATLAB Production Server Client” on page 1-3
• “Create a C++ Client” on page 1-4
• “Unsupported MATLAB Data Types for Client and Server Marshaling” on page 1-10

1

MATLAB Production Server Examples
Additional Client examples for MATLAB Production Server are available in the client
folder of your MATLAB Production Server.

1 Client Programming

1-2

Create a C MATLAB Production Server Client
To create a MATLAB Production Server client:

1 Obtain the client runtime files installed in $MPS_INSTALL/client/c.
2 In consultation with the MATLAB programmer, agree on the MATLAB function

signatures that comprise the services in the application.
3 Configure your system with the appropriate software for working with C/C++.
4 Initialize the MATLAB Production Server client runtime using

mpsInitializeEx().

mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);
5 Create the client runtime configuration.

See “Configure the Client-Server Connection” on page 2-3.
6 Create the client runtime context.

See “Create the Client Runtime Context” on page 2-2.
7 Create the required MATLAB data for the inputs and outputs of the function.

See “Data Handling” on page 2-9.
8 Evaluate the MATLAB functions.
9 Handle any errors.

See “Handle Function Processing Errors” on page 2-15.
10 Free system resources by cleaning up all MATLAB data and terminating the client

connection.

See “Clean Up MATLAB Resources” on page 2-19.

For a complete example of an implementing a C++ client, see “Create a C++ Client”.

 Create a C MATLAB Production Server Client

1-3

Create a C++ Client
This example shows how to write a MATLAB Production Server client using the C client
API. The client application calls the addmatrix function you compiled in “Create a
Deployable Archive for MATLAB Production Server” and deployed in “Share a
Deployable Archive on the Server Instance”.

Create a C++ MATLAB Production Server client application:

1 Create a file called addmatrix_client.cpp.
2 Using a text editor, open addmatrix_client.cpp.
3 Add the following include statements to the file:

#include <iostream>
#include <mps/client.h>

Note The header files for the MATLAB Production Server C client API are located in
the $MPS_INSTALL/client/c/include/mps folder where $MPS_INSTALL is the
root folder which MATLAB Production Server is installed.

4 Add the main() method to the application.

int main (void)
{
}

5 Initialize the client runtime.

mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);
6 Create the client configuration.

mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);

7 Create the client context.

mpsClientContext* context;
status = mpsruntime->createContext(&context, config);

8 Create the MATLAB data to input to the function.

double a1[2][3] = {{1,2,3},{3,2,1}};
double a2[2][3] = {{4,5,6},{6,5,4}};

int numIn=2;
mpsArray** inVal = new mpsArray* [numIn];

1 Client Programming

1-4

inVal[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);
inVal[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);

double* data1 = (double *)(mpsGetData(inVal[0]));
double* data2 = (double *)(mpsGetData(inVal[1]));

for(int i=0; i<2; i++)
{
 for(int j=0; j<3; j++)
 {
 mpsIndex subs[] = { i, j };
 mpsIndex id = mpsCalcSingleSubscript(inVal[0], 2, subs);
 data1[id] = a1[i][j];
 data2[id] = a2[i][j];
 }
}

9 Create the MATLAB data to hold the output.

int numOut = 1;
mpsArray **outVal = new mpsArray* [numOut];

10 Call the deployed MATLAB function.

Specify the following as arguments:

• client context
• URL of the function
• Number of expected outputs
• Pointer to the mpsArray holding the outputs
• Number of inputs
• Pointer to the mpsArray holding the inputs

mpsStatus status = mpsruntime->feval(context,
 "http://localhost:9910/addmatrix/addmatrix",
 numOut, outVal, numIn, (const mpsArray**)inVal);

For more information about the feval function, see the reference material included
in the $MPS_INSTALL/client folder, where $MPS_INSTALL is the name of your
MATLAB Production Server installation folder.

11 Verify that the function call was successful using an if statement.

 Create a C++ Client

1-5

if (status==MPS_OK)
{
}

12 Inside the if statement, add code to process the output.

double* out = mpsGetPr(outVal[0]);

for (int i=0; i<2; i++)
{
 for (int j=0; j<3; j++)
 {
 mpsIndex subs[] = {i, j};
 mpsIndex id = mpsCalcSingleSubscript(outVal[0], 2, subs);
 std::cout << out[id] << "\t";
 }
 std::cout << std::endl;
}

13 Add an else clause to the if statement to process any errors.

else
{
 mpsErrorInfo error;
 mpsruntime->getLastErrorInfo(context, &error);
 std::cout << "Error: " << error.message << std::endl;
 switch(error.type)
 {
 case MPS_HTTP_ERROR_INFO:
 std::cout << "HTTP: " << error.details.http.responseCode << ": "
 << error.details.http.responseMessage << std::endl;
 case MPS_MATLAB_ERROR_INFO:
 std::cout << "MATLAB: " << error.details.matlab.identifier
 << std::endl;
 std::cout << error.details.matlab.message << std::endl;
 case MPS_GENERIC_ERROR_INFO:
 std::cout << "Generic: " << error.details.general.genericErrorMsg
 << std::endl;
 }

 mpsruntime->destroyLastErrorInfo(&error);
}

14 Free the memory used by the inputs.

for (int i=0; i<numIn; i++)
 mpsDestroyArray(inVal[i]);
delete[] inVal;

1 Client Programming

1-6

15 Free the memory used by the outputs.

for (int i=0; i<numOut; i++)
 mpsDestroyArray(outVal[i]);
delete[] outVal;

16 Free the memory used by the client runtime.

mpsruntime->destroyConfig(config);
mpsruntime->destroyContext(context);
mpsTerminate();

17 Save the file.

The completed program should resemble the following:
#include <iostream>
#include <mps/client.h>

int main (void)
{
 mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);

 mpsClientConfig* config;
 mpsStatus status = mpsruntime->createConfig(&config);

 mpsClientContext* context;
 status = mpsruntime->createContext(&context, config);

 double a1[2][3] = {{1,2,3},{3,2,1}};
 double a2[2][3] = {{4,5,6},{6,5,4}};

 int numIn=2;
 mpsArray** inVal = new mpsArray* [numIn];
 inVal[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);
 inVal[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);
 double* data1 = (double *)(mpsGetData(inVal[0]));
 double* data2 = (double *)(mpsGetData(inVal[1]));
 for(int i=0; i<2; i++)
 {
 for(int j=0; j<3; j++)
 {
 mpsIndex subs[] = { i, j };
 mpsIndex id = mpsCalcSingleSubscript(inVal[0], 2, subs);
 data1[id] = a1[i][j];
 data2[id] = a2[i][j];
 }
 }

 int numOut = 1;
 mpsArray **outVal = new mpsArray* [numOut];

 status = mpsruntime->feval(context,
 "http://localhost:9910/addmatrix/addmatrix",
 numOut, outVal, numIn, (const mpsArray **)inVal);

 if (status==MPS_OK)
 {
 double* out = mpsGetPr(outVal[0]);

 Create a C++ Client

1-7

 for (int i=0; i<2; i++)
 {
 for (int j=0; j<3; j++)
 {
 mpsIndex subs[] = {i, j};
 mpsIndex id = mpsCalcSingleSubscript(outVal[0], 2, subs);
 std::cout << out[id] << "\t";
 }
 std::cout << std::endl;
 }
 }
 else
 {
 mpsErrorInfo error;
 mpsruntime->getLastErrorInfo(context, &error);
 std::cout << "Error: " << error.message << std::endl;

 switch(error.type)
 {
 case MPS_HTTP_ERROR_INFO:
 std::cout << "HTTP: "
 << error.details.http.responseCode
 << ": " << error.details.http.responseMessage
 << std::endl;
 case MPS_MATLAB_ERROR_INFO:
 std::cout << "MATLAB: " << error.details.matlab.identifier
 << std::endl;
 std::cout << error.details.matlab.message << std::endl;
 case MPS_GENERIC_ERROR_INFO:
 std::cout << "Generic: "
 << error.details.general.genericErrorMsg
 << std::endl;
 }
 mpsruntime->destroyLastErrorInfo(&error);
 }

 for (int i=0; i<numIn; i++)
 mpsDestroyArray(inVal[i]);
 delete[] inVal;

 for (int i=0; i<numOut; i++)
 mpsDestroyArray(outVal[i]);
 delete[] outVal;

 mpsruntime->destroyConfig(config);
 mpsruntime->destroyContext(context);
 mpsTerminate();
}

18 Compile the application.

To compile your client code, the compiler needs access to client.h. This header file
is stored in $MPSROOT/client/c/include/mps/.

To link your application, the linker needs access to the following files stored in
$MPSROOT/client/c/<arch>/lib/:

1 Client Programming

1-8

Files Required for Linking

Windows® UNIX®/Linux Mac OS X
$arch\lib
\mpsclient.lib

$arch/lib/
libprotobuf.so

$arch/lib/
libprotobuf.dylib

 $arch/lib/libcurl.so $arch/lib/
libcurl.dylib

 $arch/lib/
libmwmpsclient.so

$arch/lib/
libmwmpsclient.dylib

 $arch/lib/
libmwcpp11compat.so

19 Run the application.

To run your application, add the following files stored in $MPSROOT/client/c/
<arch>/lib/ to the application’s path:
Files Required for Running

Windows UNIX/Linux Mac OS X
$arch\lib
\mpsclient.dll

$arch/lib/
libprotobuf.so

$arch/lib/
libprotobuf.dylib

$arch\lib
\libprotobuf.dll

$arch/lib/libcurl.so $arch/lib/
libcurl.dylib

$arch\lib
\libcurl.dll

$arch/lib/
libmwmpsclient.so

$arch/lib/
libmwmpsclient.dylib

 $arch/lib/
libmwcpp11compat.so

The client invokes addmatrix function on the server instance and returns the
following matrix at the console:

5.0 7.0 9.0
9.0 7.0 5.0

 Create a C++ Client

1-9

Unsupported MATLAB Data Types for Client and Server
Marshaling

These data types are not supported for marshaling between MATLAB Production Server
instances and clients:

• MATLAB function handles

1 Client Programming

1-10

C/C++ Client Development

• “Create the Client Runtime Context” on page 2-2
• “Configure the Client-Server Connection” on page 2-3
• “Access Secure Programs Using HTTPS” on page 2-5
• “Data Handling” on page 2-9
• “Handle Function Processing Errors” on page 2-15
• “Clean Up MATLAB Resources” on page 2-19

2

Create the Client Runtime Context
The client runtime context encapsulates the information required by the client-server
connection.

You create the context using the mpsClientRuntime createContext() function. The
createContext() function takes a pointer to an uninitialized mpsClientContext
variable and an initialized client configuration.

mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);
mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);
mpsClientContext* context;
status = mpsruntime->createContext(&context, config);

For information on creating a client configuration, see “Configure the Client-Server
Connection” on page 2-3.

Note Do not share an instance of mpsClientContext across multiple threads at the
same time. In a multi-threaded environment, each thread should get its own instance of
mpsClientContext.

2 C/C++ Client Development

2-2

Configure the Client-Server Connection
In this section...
“Create a Connection with the Default Configuration” on page 2-3
“Change the Response Time Out” on page 2-3
“Change the Response Size Limit” on page 2-4

You configure the client-server connection using a structure of type mpsClientConfig.
The structure has fields to configure:

• amount of time, in milliseconds, the client waits for a response before timing out.
• maximum size, in bytes, of the response a client accepts.
• security parameters.

You can use methods provided by the mpsClientConfig structure, to change the values
before you create the client context.

Create a Connection with the Default Configuration

When you create the client configuration using the runtime API createConfig()
function, it is populated with default values:

• responseTimeOut = 120000
• reponseSizeLimit = 64*1024*1024 (64 MB)

mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);

Change the Response Time Out

To change the amount of time the client waits for a response use the setTimeOutSec()
function provided by the mpsClientRuntime structure.

This code sample creates a client connection with a time out value of 1000 ms:

mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);
mpsruntime->setResponseTimeOutSec(config, 1000);

 Configure the Client-Server Connection

2-3

Tip Setting the response time out to 0 specifies that the client will wait indefinitely for a
response.

Change the Response Size Limit

To change the amount of data a client will accept in a response use the
setResponseSizeLimit() function provided by the mpsClientConfig structure.

This code sample creates a client connection that accepts a maximum of 4 MB in a
response:

mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);
config->setResponseSizeLimit(4*1024*1024);

See Also

2 C/C++ Client Development

2-4

Access Secure Programs Using HTTPS
In this section...
“Configure the Client’s Environment for SSL” on page 2-5
“Make a Secure Request” on page 2-6
“Make a Secure Request Using Client Authentication” on page 2-8

It is possible to connect to a secure server instance by simply using an HTTPS address
when calling feval().

The resulting connection will be encrypted, but not secure. Neither party performs any
authentication. Neither can determine if it is communicating with a valid actor or a
malignant actor.

To establish a secure connection you must:

• install valid certificate authorities for server instance authentication
• configure your client application code to use the installed certificate authorities to

authenticate the server instance

To ensure an added level of security, you can also verify the server instance host name
against the certificate common name.

These steps allow your client to ensure that it is communicating with a valid MATLAB
Production Server instance.

In some environments, server instances will also require client authentication. In these
environments, you will need to perform the following steps:

In this section...
“Configure the Client’s Environment for SSL” on page 2-5
“Make a Secure Request” on page 2-6
“Make a Secure Request Using Client Authentication” on page 2-8

Configure the Client’s Environment for SSL

At a minimum the client requires the server's root CA (Certificate Authority) in one of
the application's certificate stores.

 Access Secure Programs Using HTTPS

2-5

To connect to a server that requires client-side authentication, the client needs a signed
certificate in one of the application's certificate stores.

To manage the certificate authorities and certificates on the client machine, use
OpenSSL.

Make a Secure Request

To configure your client to authenticate server instances you need to add the following to
the client runtime configuration:

• server root CA
• private key

If the private key is encrypted, you also need to provide the private key password. After
adding the necessary information to the client runtime configuration, verify that the
client authenticates the server instance.

In addition to the minimum requirements you can also specify:

• certificate revocation list to check against
• if the client needs to verify the server instance hostname against the certificates

common name

You do this using setters on the mpsClientRuntime structure:

• setClientCertFile(mpsClientConfig* sslCfg, const char* cert_file)
specifies the client certificate

• setPrivateKeyFile(mpsClientConfig* sslCfg, const char* pkFile)
specifies the private key

• setPrivateKeyPasswd(mpsClientConfig* sslCfg, const char* passwd)
specifies the private key password

• setCAFile(mpsClientConfig* sslCfg, const char* caFile) specifies the
certificate authority

• setRevocationListFile(mpsClientConfig* sslCfg, const char*
crlFile) specifies the certificate revocation list

• setVerifyHost(mpsClientConfig* sslCfg, mpsLogical verifyHost)
specifies if the client verifies the server instance hostname

2 C/C++ Client Development

2-6

• setVerifyPeer(mpsClientConfig* sslCfg, mpsLogical verifyPeer)
specifies if the client authenticates the server instance

The following code configures the client to fully authenticate the server instance. It also
configures the client to verify that the server instance hostname matches the certificate
common name.

mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);

mpsClientConfig* config;
mpsStatus status1 = mpsruntime->createConfig(&config);

const std::string caFile("CERT_AUTH_FILE");
mpsruntime->setCAFile(config, caFile.c_str());

const std::string crlFile("CERT_REVOCATION_LIST_FILE");
mpsruntime->setRevocationListFile(config, crlFile.c_str());

mpsruntime->setVerifyHost(config, static_cast<mpsLogical>(true));
mpsruntime->setVerifyPeer(config, static_cast<mpsLogical>(true));

mpsClientContext* context;
status = mpsruntime->createContext(&context, config);

...
status = mpsruntime->feval(context,
 "https://localhost:9911/addmatrix/addmatrix",
 numOut, outVal, numIn, (const mpsArray **)inVal);

When the client attempts to evaluate the function, it will exchange certificates with the
server instance. The client will verify the server instance certificate against the
configured CA. If the certificate is valid, the client will then verify that the server
instance hostname matches the common name stored in the server instance certificate. If
either check fails, the connection is rejected.

If the server instance is configured to perform client authentication, the connection will
also be rejected since the client is not configured with a valid certificate to exchange with
the server instance.

 Access Secure Programs Using HTTPS

2-7

Make a Secure Request Using Client Authentication

In some environments, server instances require that clients provide a certificate for
authentication. To enable the client to connect with a server instance requiring client
authentication:

• set the client cert file property using the setClientCertFile() setter of the
mpsClientRuntime structure.

• Set the private key properties to access the client certificate.

const std::string certFile("CERTFILE");
mpsruntime->setClientCertFile(config, certFile.c_str());

const std::string pkFile("PRIVATE_KEY_FILE");
mpsruntime->setPrivateKeyFile(config, pkFile.c_str());

const std::string pkPass("PRIVATE_KEY_PASSWORD");
mpsruntime->setPrivateKeyPasswd(config, pkPass.c_str());

See Also

External Websites
• OpenSSL

2 C/C++ Client Development

2-8

http://www.openssl.org/

Data Handling
In this section...
“MATLAB Array” on page 2-9
“Data Storage” on page 2-9
“MATLAB Types” on page 2-11
“Using Data Types” on page 2-13

MATLAB Array

The MATLAB Runtime works with a single object type: the MATLAB array. All
MATLAB variables (including scalars, vectors, matrices, character arrays, cell arrays,
structures, and objects) are stored as MATLAB arrays. In the MATLAB Production
Server C/C++ client API, the MATLAB array is declared to be of type mpsArray. The
mpsArray structure contains the following information about the array:

• Type
• Dimensions
• Data associated with the array
• If numeric, whether the variable is real or complex
• If sparse, its indices and nonzero maximum elements
• If a structure or object, the number of fields and field names

To access the mpsArray structure, use the mpsArray API functions. These functions
enable you to create, read, and query information about the MATLAB data used by the
client.

Note The mpsArray API mirrors the mxArray API used by MATLAB Compiler SDK™
and MATLAB external interfaces.

Data Storage

MATLAB stores data in a column-major (columnwise) numbering scheme. MATLAB
internally stores data elements from the first column first, then data elements from the
second column second, and so on, through the last column.

 Data Handling

2-9

For example, given the matrix:

a=['house'; 'floor'; 'porch']
a =
 house
 floor
 porch

its dimensions are:

size(a)
ans =
 3 5

and its data is stored as:

If a matrix is N-dimensional, MATLAB represents the data in N-major order. For
example, consider a three-dimensional array having dimensions 4-by-2-by-3. Although
you can visualize the data as:

MATLAB internally represents the data for this three-dimensional array in the following
order:
A B C D E F G H I J K L M N O P Q R S T U V W X
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 C/C++ Client Development

2-10

The mpsCalcSingleSubscript() function creates the offset from the first element of
an array to the desired element, using N-dimensional subscripting.

Note MATLAB indexing starts at 1 where C indexing starts at 0.

MATLAB Types
• “Complex Double-Precision Matrices” on page 2-11
• “Numeric Matrices” on page 2-11
• “Logical Matrices” on page 2-11
• “MATLAB Character Arrays” on page 2-12
• “Cell Arrays” on page 2-12
• “Structures” on page 2-12
• “Multidimensional Arrays” on page 2-12
• “Empty Arrays” on page 2-13
• “Sparse Matrices” on page 2-13

Complex Double-Precision Matrices

Complex double-precision, non-sparse matrices are of type double and have dimensions
m-by-n, where m is the number of rows and n is the number of columns. The data is
stored as two vectors of double-precision numbers—one contains the real data and one
contains the imaginary data. The pointers to this data are referred to as pr (pointer to
real data) and pi (pointer to imaginary data), respectively. A non-complex matrix is one
whose pi is NULL.

Numeric Matrices

Numeric matrices are single-precision floating-point integers that can be 8-, 16-, 32, and
64-bit, both signed and unsigned. The data is stored in two vectors in the same manner
as double-precision matrices.

Logical Matrices

The logical data type represents a logical true or false state using the numbers 1
and 0, respectively. Certain MATLAB functions and operators return logical 1 or logical

 Data Handling

2-11

0 to indicate whether a certain condition was found to be true or not. For example, the
statement (5 * 10) > 40 returns a logical 1 value.

MATLAB Character Arrays

MATLAB character arrays are of type char and are stored in a similar manner as
unsigned 16-bit integers, except there is no imaginary data component. Unlike C,
MATLAB character arrays are not null terminated.

Cell Arrays

Cell arrays are a collection of MATLAB arrays where each mpsArray is referred to as a
cell, enabling MATLAB arrays of different types to be stored together. Cell arrays are
stored in a similar manner to numeric matrices, except the data portion contains a single
vector of pointers to mpsArrays. Members of this vector are called cells. Each cell can be
of any supported data type, even another cell array.

Structures

Structures are MATLAB arrays with elements accessed by textual field designators.

Following is an example of how structures are created in MATLAB:

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

creates a scalar structure with three fields:

 S =
 name: 'Ed Plum'
 score: 83
 grade: 'B+'

A 1-by-1 structure is stored in the same manner as a 1-by-n cell array where n is the
number of fields in the structure. Members of the data vector are called fields. Each field
is associated with a name stored in the mpsArray.

Multidimensional Arrays

A multidimensional array is a vector of integers where each element is the size of the
corresponding dimension. The storage of the data is the same as matrices. MATLAB
arrays of any type can be multidimensional.

2 C/C++ Client Development

2-12

Empty Arrays

MATLAB arrays of any type can be empty. An empty mpsArray is one with at least one
dimension equal to zero. For example, a double-precision mpsArray of type double,
where m and n equal 0 and pr is NULL, is an empty array.

Sparse Matrices

Sparse matrices have a different storage convention from that of full matrices in
MATLAB. The parameters pr and pi are still arrays of double-precision numbers, but
these arrays contain only nonzero data elements. There are three additional parameters:

• nzmax is an integer that contains the length of ir, pr, and, if it exists, pi. It is the
maximum number of nonzero elements in the sparse matrix.

• ir points to an integer array of length nzmax containing the row indices of the
corresponding elements in pr and pi.

• jc points to an integer array of length n+1, where n is the number of columns in the
sparse matrix. The jc array contains column index information. If the jth column of
the sparse matrix has any nonzero elements, jc[j] is the index in ir and pr (and
pi if it exists) of the first nonzero element in the jth column, and jc[j+1] - 1 is
the index of the last nonzero element in that column. For the jth column of the sparse
matrix, jc[j] is the total number of nonzero elements in all preceding columns. The
last element of the jc array, jc[n], is equal to nnz, the number of nonzero elements
in the entire sparse matrix. If nnz is less than nzmax, more nonzero entries can be
inserted into the array without allocating more storage.

Using Data Types

• “Declaring Data Structures” on page 2-14
• “Manipulating Data” on page 2-14

You can write MATLAB Production Server client applications in C/C++ that accept any
class or data type supported by MATLAB (see “MATLAB Types” on page 2-11).

Caution The MATLAB Runtime does not check the validity of MATLAB data structures
created in C/C++. Using invalid syntax to create a MATLAB data structure can result in
unexpected behavior.

 Data Handling

2-13

Declaring Data Structures

To handle MATLAB arrays, use type mpsArray. The following statement declares an
mpsArray named myData:

mpsArray *myData;

To define the values of myData, use one of the mpsCreate* functions. Some useful array
creation routines are mpsCreateNumericArray(), mpsCreateCellArray(), and
mpsCreateCharArray(). For example, the following statement allocates an m-by-1
floating-point mpsArray initialized to 0:

myData = mpsCreateDoubleMatrix(m, 1, mpsREAL);

C/C++ programmers should note that data in a MATLAB array is in column-major order.
(For an illustration, see “Data Storage” on page 2-9.) Use the mpsGet* array access
routines to read data from an mpsArray.

Manipulating Data

The mpsGet* array access routines get references to the data in an mpsArray. Use these
routines to modify data in your client application. Each function provides access to
specific information in the mpsArray. Some useful functions are mpsGetData(),
mpsGetPr(), mpsGetM(), and mpsGetString(). The following statements read the
input character arrayprhs[0] into a C-style string buf:

char *buf;
int buflen;
int status;
buflen = mpsGetN(prhs[0])*sizeof(mpsChar)+1;
buf = malloc(buflen);
status = mpsGetString(prhs[0], buf, buflen);

2 C/C++ Client Development

2-14

Handle Function Processing Errors
In this section...
“Determine if an Error Occurred” on page 2-15
“Get the Error Information” on page 2-16
“Determine the Type of Error” on page 2-16
“Process HTTP Errors” on page 2-17
“Process MATLAB Errors” on page 2-17
“Process Generic Errors” on page 2-18
“Clean Up Error Information” on page 2-18

To handle errors that occur when processing MATLAB functions:

1 Evaluate the status returned by the feval() function to determine if the function
was successfully processed.

2 Get the error information using the getLastErrorInfo() function.
3 Interrogate the type field of the error detail to determine the type of error.
4 Process the error information appropriately.
5 Clean-up the resources used by the error information using the

destroyLastErrorInfo() function.

Determine if an Error Occurred

The feval() function returns a value of type mpsStatus, which signifies if an error
occurred while the function was being processed. The status can have one of two values:

• MPS_OK indicates that the function processed successfully.
• MPS_FAILURE indicates that an error occurred.

For example, to check if an error occurred while evaluating a MATLAB function, use an
if-then statement.

status = mpsruntime->feval(context,funUrl,outArgs,outVal,inArgs,inVal);
if (status==MPS_OK)
{
 ...
}
else

 Handle Function Processing Errors

2-15

{
 ...
}

Get the Error Information

If a call to the feval() function returns a value of MPS_FAILURE, you can get the details
of the error by calling the getLastErrorInfo() function. It returns an mpsErrorInfo
structure that contains these fields:

• message — String containing general information about the error
• type — Character identifying the type of error. The type identifier is used to select

the correct data type for the detailed error information.
• details — Structure containing details, such as the MATLAB stack, about the error

and its underlying cause

To get the error information and print the basic error message:

mpsErrorInfo error;
mpsruntime->getLastErrorInfo(context, &error);
std::cout << "Error: " << error.message << std::endl;

Determine the Type of Error

Before you can process the detailed error information, you need to determine what type
of error occurred. This is done by interrogating the type field of the mpsErrorInfo
structure. It can have one of three values:

• MPS_HTTP_ERROR_INFO — Non-200 HTTP error occurred and the details are stored
in an mpsErrorInfoHTTP structure

• MPS_MATLAB_ERROR_INFO — MATLAB error occurred and the details are stored in
an mpsErrorInfoMATLAB structure

• MPS_GENERIC_ERROR_INFO — Indeterminate error occurred and the details are
stored in an mpsErrorInfoGeneric structure

Once you determine the type of error, you can process the detailed information. To
determine the error type using a switch statement:

mpsErrorInfo error;
mpsruntime->getLastErrorInfo(context, &error);

2 C/C++ Client Development

2-16

switch(error.type)
{
case MPS_HTTP_ERROR_INFO:
 ...
case MPS_MATLAB_ERROR_INFO:
 ...
case MPS_MATLAB_ERROR_INFO:
 ...
}

Process HTTP Errors

The details of an HTTP errors are stored in an mpsErrorInfoHTTP structure. This
structure has two fields:

• responseCode — HTTP error code
• responseMessage — String containing the message returned with the error

For example, if you attempt to access a function using an invalid URL, the client may
return an mpsErrorInfoHTTP structure with the following values:

• responseCode — 404
• responseMessage — Not Found

Process MATLAB Errors

If the error occurs while the MATLAB Runtime is evaluating the function the client
returns an mpsErrorInfoMATLAB structure. This structure has the following fields:

• message — Error message returned by the MATLAB Runtime
• identifier — MATLAB error ID
• matlabStack — MATLAB Runtime stack
• matlabStackDepth — Number of entries in the MATLAB Runtime stack

The entries in the MATLAB Runtime stack have the following fields:

• file — Name of the MATLAB file that caused the error
• function — Name of the MATLAB function that caused the error
• line — Line number in the MATLAB file that caused the error

 Handle Function Processing Errors

2-17

To print the contents of a MATLAB error:

mpsErrorInfo error;
mpsruntime->getLastErrorInfo(context, &error);
switch(error.type)
{
case MPS_HTTP_ERROR_INFO:
 ...
case MPS_MATLAB_ERROR_INFO:
 std::cout << "MATLAB: " << error.details.matlab.identifier
 << std::endl;
 std::cout << error.details.matlab.message << std::endl;
 for (int i=0; i < error.details.matlab.matlabStackDepth; i++)
 {
 std::cout << "in " << error.details.matlab.matlabStack[i].file
 << " at " << error.details.matlab.matlabStack[i].function
 << " line number " << error.details.matlab.matlabStack[i].line
 << std::endl;
 }
case MPS_MATLAB_ERROR_INFO:
 ...
}

Process Generic Errors

If an error other than a non-200 HTTP response or a MATLAB Runtime exception
occurs, the client returns an mpsErrorInfoGeneric structure containing a
genericErrorMessage field.

Clean Up Error Information

The error information created by the MATLAB Production Server client runtime is
opaque. Once you have processed the error, clean up the resources used by the error
using the mpsClientRuntime destroyLastErrorInfo() function. It takes a pointer
to the error information returned from getLastErrorInfo().

mpsClientRuntime* mpsruntime = mpsInitialize();
mpsErrorInfo error;
mpsruntime->getLastErrorInfo(context, &error);
...
mpsruntime->destroyLastErrorInfo(&error);

2 C/C++ Client Development

2-18

Clean Up MATLAB Resources
In this section...
“Clean Up Client Configuration” on page 2-19
“Clean Up Client Context” on page 2-19
“Clean Up Client Runtime” on page 2-20
“Clean Up MATLAB Arrays” on page 2-20

Clean Up Client Configuration

You can clean up the client configuration any time after it is used to create the client
context. The context copies the required configuration values when it is created.

To clean up the client configuration, use the mpsClientRuntime destroyConfig()
function with a pointer to the client configuration data.

mpsClientRuntime* mpsruntime = mpsInitialize();
mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);
mpsClientContext* context;
status = mpsruntime->createContext(&context, config);
...
mpsruntime->destroyConfig(config);

Clean Up Client Context

The client context encapsulates the connection framework between the client and a
server instance. It is required to evaluate MATLAB functions. The context also performs
a number of tasks to optimize the connections to server instances.

The client context should not be cleaned up until the client is done evaluating MATLAB
functions.

Clean up the client context using the mpsClientRuntime destroyContext() function
with a pointer to the client context data.

mpsClientRuntime* mpsruntime = mpsInitialize();
mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);

 Clean Up MATLAB Resources

2-19

mpsClientContext* context;
status = mpsruntime->createContext(&context, config);
...
mpsruntime->destroyContext(context);

Clean Up Client Runtime

When you are finished using the client API, clean up the runtime resources using the
mpsTerminate() function.

Note mpsTerminate() does not clean up the client context or the client configuration.
They must be cleaned up before calling mpsTerminate().

Clean Up MATLAB Arrays

MATLAB arrays stored in mpsArray variables are opaque. They contain a number of
fields used to marshal data between your C client code and the MATLAB Runtime.
Variables containing MATLAB arrays can be large.

Clean up variables containing MATLAB arrays using the mpsDestroyArray() function.
The mpsDestroyArray() function takes a pointer to the MATLAB array being cleaned
up. It frees all of the memory used by the array.

Note When cleaning up the arrays used as inputs and outputs of an feval() call, you
must clean up all of the MATLAB arrays contained in the array before you destroy the
MATLAB array pointing to the inputs or outputs.

Clean up the data used in an feval() call.

const mpsArray** const inVal = new const mpsArray* [numIn];
...
mpsArray **outVal = new mpsArray* [numOut];
...
status = mpsruntime->feval(context,funUrl, numOut, outVal,
 numIn, inVal);
if (status==MPS_OK)
{
 ...

2 C/C++ Client Development

2-20

 for (int i=0; i<numOut; i++)
 mpsDestroyArray(outVal[i]);
 delete[] outVal;
}
for (int i=0; i<numIn; i++)
 mpsDestroyArray(inVal[i]);
delete[] inVal;

 Clean Up MATLAB Resources

2-21

